253 research outputs found

    Pulsed PECVD growth of silicon nanowires on various substrates

    Get PDF
    Silicon nanowires with high aspect ratio were grown using PPECVD and a gold catalyst on a variety of different substrates. The morphology of the nanowires was investigated for a range of crystalline silicon, glass, metal, ITO coated and amorphous silicon coated glass substrates. Deposition of the nanowires was carried out in a parallel plate PECVD chamber modified for PPECVD using a 1kHz square wave to modulate the 13.56MHz RF signal. Samples were analyzed using either a Phillips XL20 SEM of a ZEISS 1555 VP FESEM. The average diameter of the nanowires was found to be independent of the substrate used. The silicon nanowires would grow on all of the substrates tested, however the density varied greatly. It was found that nanowires grew with higher density on the ITO coated glass substrates rather than the uncoated glass substrates. Aligned nanowire growth was observed on polished copper substrates. Of all the substrates trialed, ITO coated aluminosilicate glass proved to be the most effective substrate for the growth of silicon nanowires

    Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas

    Get PDF
    The aim of this study is to investigate the seasonal effect of dust on the degradation of PV modules deployed in two different climate areas, Perth, Western Australia, a temperate climate region and Nusa Tenggara Timur (NTT), Indonesia, a tropical climate region. Results revealed that PV performance varied with season. In Perth, the performance of PV modules which was maximal in the beginning of summer decreased significantly at the end of the season. The performance then increased back approaching the initial position at the end of autumn and reached a peak at the end of winter. Similar reduction to the summer’s performance was accounted by the modules at the end of spring. Meanwhile, in NTT, the performance of PV modules was maximal in the beginning of wet season, dropped slightly at the end of the season and decreased significantly at the end of dry season. Degradation of all modules in the two sites was more affected by dust compared to the non-dust related factors. The degradation is important information for future PV design in both areas, especially in NTT which accounted greater values than the typical dust de-rating factors

    Sustainable use of light for chemical and electrical energy production

    Get PDF
    The Earth receives around 1.9 x 106 EJ of energy in visible light each year but only a fraction of this sunlight energy is being converted to biomass (chemical energy) through the process of photosynthesis. There is no doubt our fossil fuel resources are depleting; therefore there is an urgent need for an alternative source of renewable energy that is sustainable. This project works on the potential of developing a novel cultivation system for maximising the use of solar energy by combining solar panels with outdoor microalgae ponds for the production of both chemical and electrical energy

    Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas

    Get PDF
    Results of the study revealed that when dust impinged on the surface of the PV modules, monthly maximum power output of a 1.5 kWp system in Perth, Australia and a 50 Wp system in Nusa Tenggara Timur (NTT), Indonesia decreased, on average, by about 4.5% and 8%, respectively. Economic modelling showed that, the cost of production per kWh lost due to dust exhibited by these systems were A0.26/kWhandA 0.26/kWh and A 0.15/kWh, respectively. Comparison of the cost of energy losses and maintenance revealed that, the Perth system would require manual cleaning in October while the system in NTT would require cleaning in August and October. Although the saving in production losses is not economically significant, this cleaning schedule was recommended, particularly for small systems in NTT since the extra output can have a significant effect on the quality of life in remote villages. The key finding was that higher dust de-rating factors and more cleaning activity may be more appropriate for PV systems deployed in tropical climate areas than that in temperate climate regions. It is recommended that PV system Standards that use the 5% performance de-rating factor due to soiling are reviewed and consideration given to climate-dependent de-rating factors

    Sustainable conversion of light to algal biomass and electricity: A net energy return analysis

    Get PDF
    A substantial interest is growing in the cultivation of microalgae as a source of biofuel production, considering their relatively high lipid content, fast growth rates, use of alternative water sources, and growth on non-arable land. This paper conducts an energy life cycle analysis for a novel hypothetical hybrid energy system where the electricity required for microalgae cultivation is generated from semi-transparent PV panels to energise paddle wheels and light emitting diodes installed on raceway ponds. The combined system configuration allows for a full utilisation of the solar spectrum, while enhancing the photosynthetic productivity of microalgae cultivation and reducing the evaporation from raceway ponds. The findings of study for a hypothetical system installed in Western Australia show that the amount of land use substantially decreases by 43%, the productivity of microalgae cultivation increases by 75%, while the net energy return of the system remains significantly higher than one, in comparison with a microalgae cultivation system energised by grid electricity. Among a range of variables affecting the energy performance of the proposed system, the primary energy demand for PV panels and conversion efficiency of LEDs exert the highest impact on energy life cycle of the syste

    Effects of different light spectra on the growth, productivity and photosynthesis of two acclimated strains of Nannochloropsis sp.

    Get PDF
    Light (quantity and quality) is the main growth-limiting factor of photoautotrophic microalgae. The integration of selective permeable photovoltaic filters above microalgae cultivation systems has been proposed previously to improve both production efficiencies and economics. In order to optimize such system, we evaluated the growth and photosynthesis of two spectrally acclimated strains of Nannochloropsis sp. (MUR 266 and MUR 267) grown semi-continuously under different light spectra in this study. No significant differences in biomass productivity were observed between cultures acclimated under full blue (BL, 400-525 nm) and narrow blue (LEDB, 430-490 nm) light when compared to the positive control of white light (WL, 400-700 nm), while lower values were recorded under red (RL, 600-700 nm) and pink light (PL, 400-525, 600-700 nm) for both species. When compared to WL, the photosynthetic performance (Fq′/Fm′, αETR, ETRmax) of both species was higher under both BL and LEDB except for the Fq′/Fm′ of MUR 267 under LEDB. Chlorophyll a content was highest in cultures acclimated to RL while values tended higher under LEDB, RL and PL for MUR 267. Total lipid yield of both MUR 266 and MUR 267 was higher under BL and PL than WL. Based on the results of this study, theoretical modelling of the proposed photovoltaic-microalgae system indicate approximately 150-210 W m−2 of electricity could be potentially generated if only blue wavelengths (BL and LEDB) are selectively filtered from sunlight while converting the remaining unused spectrum of sunlight into electricity

    5 years of experience implementing a methicillin-resistant Staphylococcus aureus search and destroy policy at the largest university medical center in the Netherlands

    Get PDF
    OBJECTIVE: To evaluate the effectiveness of a rigorous search and destroy policy for controlling methicillin-resistant Staphylococcus aureus (MRSA) infection or colonization. DESIGN: Hospital-based observational follow-up study. SETTING: Erasmus University Medical Center Rotterdam, a 1,200-bed tertiary care center in Rotterdam, the Netherlands. METHODS: Outbreak control was accomplished by the use of active surveillance cultures for persons at risk, by the preemptive isolation of patients at risk, and by the strict isolation of known MRSA carriers and the eradication of MRSA carriage. For unexpected cases of MRSA colonization or infection, patients placed in strict isolation or contact isolation and healthcare workers (HCWs) were screened. We collected data from 2000-2004. RESULTS: During the 5-year study period, 51,907 MRSA screening culture

    Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoculture, multi-cropping and wider use of highly resistant cultivars have been proposed as mechanisms to explain the elevated rate of evolution of plant pathogens in agricultural ecosystems. We used a mark-release-recapture experiment with the wheat pathogen <it>Phaeosphaeria nodorum </it>to evaluate the impact of two of these mechanisms on the evolution of a pathogen population. Nine <it>P. nodorum </it>isolates marked with ten microsatellite markers and one minisatellite were released onto five replicated host populations to initiate epidemics of Stagonospora nodorum leaf blotch. The experiment was carried out over two consecutive host growing seasons and two pathogen collections were made during each season.</p> <p>Results</p> <p>A total of 637 pathogen isolates matching the marked inoculants were recovered from inoculated plots over two years. Genetic diversity in the host populations affected the evolution of the corresponding <it>P. nodorum </it>populations. In the cultivar mixture the relative frequencies of inoculants did not change over the course of the experiment and the pathogen exhibited a low variation in selection coefficients.</p> <p>Conclusions</p> <p>Our results support the hypothesis that increasing genetic heterogeneity in host populations may retard the rate of evolution in associated pathogen populations. Our experiment also provides indirect evidence of fitness costs associated with host specialization in <it>P. nodorum </it>as indicated by differential selection during the pathogenic and saprophytic phases.</p

    Marimo machines: Oscillators, biosensors and actuators

    Get PDF
    BackgroundThe green algae balls (Aegagropila linnaei), known as Marimo, are large spherical colonies of live photosynthetic filaments, formed by rolling water currents in freshwater lakes. Photosynthesis therein produces gas bubbles that can attach to the Marimo, consequently changing its buoyancy. This property allows them to float in the presence of light and sink in its absence.ResultsWe demonstrate that this ability can be harnessed to make actuators, biosensors and bioprocessors (oscillator, logic gates). Factors affecting Marimo movement have been studied to enable the design, construction and testing of working prototypes.ConclusionsA novel actuator design is reported, incorporating an enhanced bubble retention system and the design and optimisation of a bio-oscillator is demonstrated. A range of logic gates (or, and, nor, nand, xor) implementable with Marimo have been proposed
    • …
    corecore